MakeItFrom.com
Menu (ESC)

AISI 321 Stainless Steel vs. C69710 Brass

AISI 321 stainless steel belongs to the iron alloys classification, while C69710 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 321 stainless steel and the bottom bar is C69710 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34 to 50
25
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
41
Shear Strength, MPa 420 to 460
300
Tensile Strength: Ultimate (UTS), MPa 590 to 690
470
Tensile Strength: Yield (Proof), MPa 220 to 350
230

Thermal Properties

Latent Heat of Fusion, J/g 290
240
Maximum Temperature: Mechanical, °C 870
160
Melting Completion (Liquidus), °C 1430
930
Melting Onset (Solidus), °C 1400
880
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 16
40
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 16
26
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 3.2
2.7
Embodied Energy, MJ/kg 45
44
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 230
99
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 310
250
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21 to 25
16
Strength to Weight: Bending, points 20 to 22
16
Thermal Diffusivity, mm2/s 4.1
12
Thermal Shock Resistance, points 13 to 15
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Arsenic (As), % 0
0.030 to 0.060
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
75 to 80
Iron (Fe), % 65.3 to 74
0 to 0.2
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 2.0
0 to 0.4
Nickel (Ni), % 9.0 to 12
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
2.5 to 3.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.7
0
Zinc (Zn), % 0
13.8 to 22
Residuals, % 0
0 to 0.5