MakeItFrom.com
Menu (ESC)

AISI 321 Stainless Steel vs. S20432 Stainless Steel

Both AISI 321 stainless steel and S20432 stainless steel are iron alloys. They have a moderately high 94% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 321 stainless steel and the bottom bar is S20432 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 210
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34 to 50
45
Fatigue Strength, MPa 220 to 270
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 420 to 460
400
Tensile Strength: Ultimate (UTS), MPa 590 to 690
580
Tensile Strength: Yield (Proof), MPa 220 to 350
230

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 480
410
Maximum Temperature: Mechanical, °C 870
900
Melting Completion (Liquidus), °C 1430
1410
Melting Onset (Solidus), °C 1400
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 16
13
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
2.7
Embodied Energy, MJ/kg 45
38
Embodied Water, L/kg 140
140

Common Calculations

PREN (Pitting Resistance) 19
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 230
210
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 310
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21 to 25
21
Strength to Weight: Bending, points 20 to 22
20
Thermal Diffusivity, mm2/s 4.1
4.0
Thermal Shock Resistance, points 13 to 15
13

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 17 to 19
17 to 18
Copper (Cu), % 0
2.0 to 3.0
Iron (Fe), % 65.3 to 74
66.7 to 74
Manganese (Mn), % 0 to 2.0
3.0 to 5.0
Nickel (Ni), % 9.0 to 12
4.0 to 6.0
Nitrogen (N), % 0 to 0.1
0.050 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.7
0