MakeItFrom.com
Menu (ESC)

AISI 329 Stainless Steel vs. C81500 Copper

AISI 329 stainless steel belongs to the iron alloys classification, while C81500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 329 stainless steel and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
110
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 17
17
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 80
44
Tensile Strength: Ultimate (UTS), MPa 710
350
Tensile Strength: Yield (Proof), MPa 540
280

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1440
1090
Melting Onset (Solidus), °C 1390
1080
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
320
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
82
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
83

Otherwise Unclassified Properties

Base Metal Price, % relative 16
31
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 3.1
2.6
Embodied Energy, MJ/kg 44
41
Embodied Water, L/kg 170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
56
Resilience: Unit (Modulus of Resilience), kJ/m3 730
330
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25
11
Strength to Weight: Bending, points 23
12
Thermal Diffusivity, mm2/s 4.3
91
Thermal Shock Resistance, points 19
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 23 to 28
0.4 to 1.5
Copper (Cu), % 0
97.4 to 99.6
Iron (Fe), % 63.1 to 74
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 2.0 to 5.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5