MakeItFrom.com
Menu (ESC)

AISI 334 Stainless Steel vs. 518.0 Aluminum

AISI 334 stainless steel belongs to the iron alloys classification, while 518.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 334 stainless steel and the bottom bar is 518.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
80
Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 34
5.0
Fatigue Strength, MPa 150
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
25
Shear Strength, MPa 360
200
Tensile Strength: Ultimate (UTS), MPa 540
310
Tensile Strength: Yield (Proof), MPa 190
190

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1410
620
Melting Onset (Solidus), °C 1370
560
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 16
24

Otherwise Unclassified Properties

Base Metal Price, % relative 22
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 4.1
9.4
Embodied Energy, MJ/kg 59
150
Embodied Water, L/kg 170
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
14
Resilience: Unit (Modulus of Resilience), kJ/m3 96
270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 19
32
Strength to Weight: Bending, points 19
38
Thermal Shock Resistance, points 12
14

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
88.1 to 92.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 55.7 to 62.7
0 to 1.8
Magnesium (Mg), % 0
7.5 to 8.5
Manganese (Mn), % 0 to 1.0
0 to 0.35
Nickel (Ni), % 19 to 21
0 to 0.15
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0.15 to 0.6
0
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.25