MakeItFrom.com
Menu (ESC)

AISI 334 Stainless Steel vs. B535.0 Aluminum

AISI 334 stainless steel belongs to the iron alloys classification, while B535.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 334 stainless steel and the bottom bar is B535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
65
Elastic (Young's, Tensile) Modulus, GPa 200
66
Elongation at Break, % 34
10
Fatigue Strength, MPa 150
62
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
25
Shear Strength, MPa 360
210
Tensile Strength: Ultimate (UTS), MPa 540
260
Tensile Strength: Yield (Proof), MPa 190
130

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1410
630
Melting Onset (Solidus), °C 1370
550
Specific Heat Capacity, J/kg-K 480
910
Thermal Expansion, µm/m-K 16
25

Otherwise Unclassified Properties

Base Metal Price, % relative 22
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 4.1
9.4
Embodied Energy, MJ/kg 59
160
Embodied Water, L/kg 170
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
22
Resilience: Unit (Modulus of Resilience), kJ/m3 96
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 19
28
Strength to Weight: Bending, points 19
35
Thermal Shock Resistance, points 12
11

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
91.7 to 93.4
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 55.7 to 62.7
0 to 0.15
Magnesium (Mg), % 0
6.5 to 7.5
Manganese (Mn), % 0 to 1.0
0 to 0.050
Nickel (Ni), % 19 to 21
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.15 to 0.6
0.1 to 0.25
Residuals, % 0
0 to 0.15