MakeItFrom.com
Menu (ESC)

AISI 334 Stainless Steel vs. EN AC-44000 Aluminum

AISI 334 stainless steel belongs to the iron alloys classification, while EN AC-44000 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 334 stainless steel and the bottom bar is EN AC-44000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
51
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 34
7.3
Fatigue Strength, MPa 150
64
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 540
180
Tensile Strength: Yield (Proof), MPa 190
86

Thermal Properties

Latent Heat of Fusion, J/g 290
560
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1410
590
Melting Onset (Solidus), °C 1370
590
Specific Heat Capacity, J/kg-K 480
910
Thermal Expansion, µm/m-K 16
21

Otherwise Unclassified Properties

Base Metal Price, % relative 22
9.5
Density, g/cm3 7.9
2.5
Embodied Carbon, kg CO2/kg material 4.1
7.8
Embodied Energy, MJ/kg 59
150
Embodied Water, L/kg 170
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
11
Resilience: Unit (Modulus of Resilience), kJ/m3 96
51
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 25
55
Strength to Weight: Axial, points 19
20
Strength to Weight: Bending, points 19
28
Thermal Shock Resistance, points 12
8.4

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.15 to 0.6
87.1 to 90
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 55.7 to 62.7
0 to 0.19
Magnesium (Mg), % 0
0 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 19 to 21
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
10 to 11.8
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.15 to 0.6
0 to 0.15
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1