MakeItFrom.com
Menu (ESC)

AISI 334 Stainless Steel vs. C36200 Brass

AISI 334 stainless steel belongs to the iron alloys classification, while C36200 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 334 stainless steel and the bottom bar is C36200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34
20 to 53
Poisson's Ratio 0.28
0.31
Rockwell B Hardness 79
62 to 78
Shear Modulus, GPa 77
39
Shear Strength, MPa 360
210 to 240
Tensile Strength: Ultimate (UTS), MPa 540
340 to 420
Tensile Strength: Yield (Proof), MPa 190
130 to 360

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 1000
120
Melting Completion (Liquidus), °C 1410
900
Melting Onset (Solidus), °C 1370
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Expansion, µm/m-K 16
21

Otherwise Unclassified Properties

Base Metal Price, % relative 22
23
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 4.1
2.6
Embodied Energy, MJ/kg 59
45
Embodied Water, L/kg 170
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
74 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 96
89 to 630
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19
11 to 14
Strength to Weight: Bending, points 19
13 to 15
Thermal Shock Resistance, points 12
11 to 14

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
60 to 63
Iron (Fe), % 55.7 to 62.7
0 to 0.15
Lead (Pb), % 0
3.5 to 4.5
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 19 to 21
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.15 to 0.6
0
Zinc (Zn), % 0
32.4 to 36.5