MakeItFrom.com
Menu (ESC)

AISI 334 Stainless Steel vs. C65500 Bronze

AISI 334 stainless steel belongs to the iron alloys classification, while C65500 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AISI 334 stainless steel and the bottom bar is C65500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
4.0 to 70
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 79
62 to 97
Shear Modulus, GPa 77
43
Shear Strength, MPa 360
260 to 440
Tensile Strength: Ultimate (UTS), MPa 540
360 to 760
Tensile Strength: Yield (Proof), MPa 190
120 to 430

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Maximum Temperature: Mechanical, °C 1000
200
Melting Completion (Liquidus), °C 1410
1030
Melting Onset (Solidus), °C 1370
970
Specific Heat Capacity, J/kg-K 480
400
Thermal Expansion, µm/m-K 16
18

Otherwise Unclassified Properties

Base Metal Price, % relative 22
29
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 4.1
2.7
Embodied Energy, MJ/kg 59
42
Embodied Water, L/kg 170
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
11 to 450
Resilience: Unit (Modulus of Resilience), kJ/m3 96
62 to 790
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19
12 to 24
Strength to Weight: Bending, points 19
13 to 21
Thermal Shock Resistance, points 12
12 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
91.5 to 96.7
Iron (Fe), % 55.7 to 62.7
0 to 0.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0.5 to 1.3
Nickel (Ni), % 19 to 21
0 to 0.6
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
2.8 to 3.8
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.15 to 0.6
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.5