MakeItFrom.com
Menu (ESC)

AISI 347 Stainless Steel vs. C67300 Bronze

AISI 347 stainless steel belongs to the iron alloys classification, while C67300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 347 stainless steel and the bottom bar is C67300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34 to 46
12
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
41
Shear Strength, MPa 430 to 460
300
Tensile Strength: Ultimate (UTS), MPa 610 to 690
500
Tensile Strength: Yield (Proof), MPa 240 to 350
340

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 870
130
Melting Completion (Liquidus), °C 1430
870
Melting Onset (Solidus), °C 1400
830
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
95
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
25

Otherwise Unclassified Properties

Base Metal Price, % relative 19
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.6
2.7
Embodied Energy, MJ/kg 52
46
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 220
55
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 310
550
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 22 to 25
17
Strength to Weight: Bending, points 20 to 22
17
Thermal Diffusivity, mm2/s 4.3
30
Thermal Shock Resistance, points 13 to 15
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.25
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
58 to 63
Iron (Fe), % 64.1 to 74
0 to 0.5
Lead (Pb), % 0
0.4 to 3.0
Manganese (Mn), % 0 to 2.0
2.0 to 3.5
Nickel (Ni), % 9.0 to 13
0 to 0.25
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0.5 to 1.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
27.2 to 39.1
Residuals, % 0
0 to 0.5