MakeItFrom.com
Menu (ESC)

AISI 384 Stainless Steel vs. C49300 Brass

AISI 384 stainless steel belongs to the iron alloys classification, while C49300 brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 384 stainless steel and the bottom bar is C49300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 480
430 to 520

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 910
120
Melting Completion (Liquidus), °C 1420
880
Melting Onset (Solidus), °C 1380
840
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 16
88
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
15
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
17

Otherwise Unclassified Properties

Base Metal Price, % relative 20
26
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 3.7
3.0
Embodied Energy, MJ/kg 52
50
Embodied Water, L/kg 150
370

Common Calculations

Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 17
15 to 18
Strength to Weight: Bending, points 17
16 to 18
Thermal Diffusivity, mm2/s 4.3
29
Thermal Shock Resistance, points 11
14 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.5
Antimony (Sb), % 0
0 to 0.5
Bismuth (Bi), % 0
0.5 to 2.0
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 0
58 to 62
Iron (Fe), % 60.9 to 68
0 to 0.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 2.0
0 to 0.030
Nickel (Ni), % 17 to 19
0 to 1.5
Phosphorus (P), % 0 to 0.045
0 to 0.2
Selenium (Se), % 0
0 to 0.2
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.0 to 1.8
Zinc (Zn), % 0
30.6 to 40.5
Residuals, % 0
0 to 0.5