MakeItFrom.com
Menu (ESC)

AISI 405 Stainless Steel vs. Grade Ti-Pd18 Titanium

AISI 405 stainless steel belongs to the iron alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 405 stainless steel and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
320
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22
17
Fatigue Strength, MPa 130
350
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 470
710
Tensile Strength: Yield (Proof), MPa 200
540

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 820
330
Melting Completion (Liquidus), °C 1530
1640
Melting Onset (Solidus), °C 1480
1590
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 30
8.2
Thermal Expansion, µm/m-K 11
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.7

Otherwise Unclassified Properties

Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.0
41
Embodied Energy, MJ/kg 28
670
Embodied Water, L/kg 100
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
110
Resilience: Unit (Modulus of Resilience), kJ/m3 100
1380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 17
44
Strength to Weight: Bending, points 17
39
Thermal Diffusivity, mm2/s 8.1
3.3
Thermal Shock Resistance, points 16
52

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.1 to 0.3
2.5 to 3.5
Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 11.5 to 14.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 82.5 to 88.4
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.6
0 to 0.050
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4