MakeItFrom.com
Menu (ESC)

AISI 405 Stainless Steel vs. C70600 Copper-nickel

AISI 405 stainless steel belongs to the iron alloys classification, while C70600 copper-nickel belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 405 stainless steel and the bottom bar is C70600 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 22
3.0 to 34
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
46
Shear Strength, MPa 300
190 to 330
Tensile Strength: Ultimate (UTS), MPa 470
290 to 570
Tensile Strength: Yield (Proof), MPa 200
63 to 270

Thermal Properties

Latent Heat of Fusion, J/g 280
220
Maximum Temperature: Mechanical, °C 820
220
Melting Completion (Liquidus), °C 1530
1150
Melting Onset (Solidus), °C 1480
1100
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 30
44
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
9.8
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
33
Calomel Potential, mV -210
-280
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.0
3.4
Embodied Energy, MJ/kg 28
51
Embodied Water, L/kg 100
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
6.5 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 100
16 to 290
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 17
9.1 to 18
Strength to Weight: Bending, points 17
11 to 17
Thermal Diffusivity, mm2/s 8.1
13
Thermal Shock Resistance, points 16
9.8 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.1 to 0.3
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 11.5 to 14.5
0
Copper (Cu), % 0
84.7 to 90
Iron (Fe), % 82.5 to 88.4
1.0 to 1.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0 to 0.6
9.0 to 11
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5