MakeItFrom.com
Menu (ESC)

AISI 410Cb Stainless Steel vs. C92200 Bronze

AISI 410Cb stainless steel belongs to the iron alloys classification, while C92200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 410Cb stainless steel and the bottom bar is C92200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 15
25
Fatigue Strength, MPa 180 to 460
76
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 550 to 960
280
Tensile Strength: Yield (Proof), MPa 310 to 790
140

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 730
170
Melting Completion (Liquidus), °C 1450
990
Melting Onset (Solidus), °C 1400
830
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 27
70
Thermal Expansion, µm/m-K 10
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
14
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
14

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
32
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.0
3.2
Embodied Energy, MJ/kg 29
52
Embodied Water, L/kg 97
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 130
58
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 1600
87
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 20 to 35
8.9
Strength to Weight: Bending, points 19 to 28
11
Thermal Diffusivity, mm2/s 7.3
21
Thermal Shock Resistance, points 20 to 35
9.9

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.18
0
Chromium (Cr), % 11 to 13
0
Copper (Cu), % 0
86 to 90
Iron (Fe), % 84.5 to 89
0 to 0.25
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0.050 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
5.5 to 6.5
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0
0 to 0.7