MakeItFrom.com
Menu (ESC)

AISI 416Se Stainless Steel vs. EN 1.5522 Steel

Both AISI 416Se stainless steel and EN 1.5522 steel are iron alloys. They have 86% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 416Se stainless steel and the bottom bar is EN 1.5522 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
140 to 190
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
11 to 21
Fatigue Strength, MPa 210
210 to 330
Poisson's Ratio 0.28
0.29
Reduction in Area, % 50
59 to 69
Shear Modulus, GPa 76
73
Shear Strength, MPa 340
320 to 380
Tensile Strength: Ultimate (UTS), MPa 540
450 to 1490
Tensile Strength: Yield (Proof), MPa 310
300 to 520

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 760
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 30
51
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
1.9
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 1.9
1.4
Embodied Energy, MJ/kg 27
19
Embodied Water, L/kg 100
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
45 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 250
250 to 720
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20
16 to 53
Strength to Weight: Bending, points 19
17 to 37
Thermal Diffusivity, mm2/s 8.1
14
Thermal Shock Resistance, points 20
13 to 44

Alloy Composition

Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0 to 0.15
0.2 to 0.24
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 83.1 to 87.9
98 to 98.9
Manganese (Mn), % 0 to 1.3
0.9 to 1.2
Phosphorus (P), % 0 to 0.060
0 to 0.025
Selenium (Se), % 0.15 to 0.35
0
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.060
0 to 0.025