MakeItFrom.com
Menu (ESC)

AISI 418 Stainless Steel vs. EN 1.4509 Stainless Steel

Both AISI 418 stainless steel and EN 1.4509 stainless steel are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 418 stainless steel and the bottom bar is EN 1.4509 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 330
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 17
21
Fatigue Strength, MPa 520
170
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 680
330
Tensile Strength: Ultimate (UTS), MPa 1100
530
Tensile Strength: Yield (Proof), MPa 850
260

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Corrosion, °C 390
570
Maximum Temperature: Mechanical, °C 770
890
Melting Completion (Liquidus), °C 1500
1440
Melting Onset (Solidus), °C 1460
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 25
25
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 15
13
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.9
2.8
Embodied Energy, MJ/kg 41
41
Embodied Water, L/kg 110
120

Common Calculations

PREN (Pitting Resistance) 19
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
90
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 38
19
Strength to Weight: Bending, points 29
19
Thermal Diffusivity, mm2/s 6.7
6.8
Thermal Shock Resistance, points 40
19

Alloy Composition

Carbon (C), % 0.15 to 0.2
0 to 0.030
Chromium (Cr), % 12 to 14
17.5 to 18.5
Iron (Fe), % 78.5 to 83.6
77.8 to 82.1
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 1.8 to 2.2
0
Niobium (Nb), % 0
0.3 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0.1 to 0.6
Tungsten (W), % 2.5 to 3.5
0