MakeItFrom.com
Menu (ESC)

AISI 418 Stainless Steel vs. C96600 Copper

AISI 418 stainless steel belongs to the iron alloys classification, while C96600 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 418 stainless steel and the bottom bar is C96600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 17
7.0
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
52
Tensile Strength: Ultimate (UTS), MPa 1100
760
Tensile Strength: Yield (Proof), MPa 850
480

Thermal Properties

Latent Heat of Fusion, J/g 270
240
Maximum Temperature: Mechanical, °C 770
280
Melting Completion (Liquidus), °C 1500
1180
Melting Onset (Solidus), °C 1460
1100
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 25
30
Thermal Expansion, µm/m-K 10
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
4.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 15
65
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 2.9
7.0
Embodied Energy, MJ/kg 41
100
Embodied Water, L/kg 110
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
47
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
830
Stiffness to Weight: Axial, points 14
8.7
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 38
24
Strength to Weight: Bending, points 29
21
Thermal Diffusivity, mm2/s 6.7
8.4
Thermal Shock Resistance, points 40
25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0.15 to 0.2
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
63.5 to 69.8
Iron (Fe), % 78.5 to 83.6
0.8 to 1.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 1.8 to 2.2
29 to 33
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 2.5 to 3.5
0
Residuals, % 0
0 to 0.5