MakeItFrom.com
Menu (ESC)

AISI 418 Stainless Steel vs. S30815 Stainless Steel

Both AISI 418 stainless steel and S30815 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 418 stainless steel and the bottom bar is S30815 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 330
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 17
45
Fatigue Strength, MPa 520
320
Poisson's Ratio 0.28
0.28
Reduction in Area, % 50
56
Shear Modulus, GPa 77
77
Shear Strength, MPa 680
480
Tensile Strength: Ultimate (UTS), MPa 1100
680
Tensile Strength: Yield (Proof), MPa 850
350

Thermal Properties

Latent Heat of Fusion, J/g 270
310
Maximum Temperature: Corrosion, °C 390
430
Maximum Temperature: Mechanical, °C 770
1020
Melting Completion (Liquidus), °C 1500
1400
Melting Onset (Solidus), °C 1460
1360
Specific Heat Capacity, J/kg-K 470
490
Thermal Conductivity, W/m-K 25
15
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 15
17
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.9
3.3
Embodied Energy, MJ/kg 41
47
Embodied Water, L/kg 110
160

Common Calculations

PREN (Pitting Resistance) 19
24
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
260
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 38
25
Strength to Weight: Bending, points 29
22
Thermal Diffusivity, mm2/s 6.7
4.0
Thermal Shock Resistance, points 40
15

Alloy Composition

Carbon (C), % 0.15 to 0.2
0.050 to 0.1
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 12 to 14
20 to 22
Iron (Fe), % 78.5 to 83.6
62.8 to 68.4
Manganese (Mn), % 0 to 0.5
0 to 0.8
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 1.8 to 2.2
10 to 12
Nitrogen (N), % 0
0.14 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.5
1.4 to 2.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Tungsten (W), % 2.5 to 3.5
0