MakeItFrom.com
Menu (ESC)

AISI 420 Stainless Steel vs. AWS ER100S-1

Both AISI 420 stainless steel and AWS ER100S-1 are iron alloys. They have 87% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 420 stainless steel and the bottom bar is AWS ER100S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 8.0 to 15
18
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Tensile Strength: Ultimate (UTS), MPa 690 to 1720
770
Tensile Strength: Yield (Proof), MPa 380 to 1310
700

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Melting Completion (Liquidus), °C 1510
1460
Melting Onset (Solidus), °C 1450
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 27
49
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
3.6
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.0
1.8
Embodied Energy, MJ/kg 28
24
Embodied Water, L/kg 100
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 130
130
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 4410
1290
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25 to 62
27
Strength to Weight: Bending, points 22 to 41
24
Thermal Diffusivity, mm2/s 7.3
13
Thermal Shock Resistance, points 25 to 62
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0.15 to 0.4
0 to 0.080
Chromium (Cr), % 12 to 14
0 to 0.3
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 82.3 to 87.9
93.5 to 96.9
Manganese (Mn), % 0 to 1.0
1.3 to 1.8
Molybdenum (Mo), % 0 to 0.5
0.25 to 0.55
Nickel (Ni), % 0 to 0.75
1.4 to 2.1
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0 to 1.0
0.2 to 0.55
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.050
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5