MakeItFrom.com
Menu (ESC)

AISI 420 Stainless Steel vs. EN AC-41000 Aluminum

AISI 420 stainless steel belongs to the iron alloys classification, while EN AC-41000 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 420 stainless steel and the bottom bar is EN AC-41000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
57 to 97
Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 8.0 to 15
4.5
Fatigue Strength, MPa 220 to 670
58 to 71
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 690 to 1720
170 to 280
Tensile Strength: Yield (Proof), MPa 380 to 1310
80 to 210

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 620
170
Melting Completion (Liquidus), °C 1510
640
Melting Onset (Solidus), °C 1450
630
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 27
170
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
38
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
130

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.0
8.2
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 100
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 130
6.4 to 11
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 4410
46 to 300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 25 to 62
18 to 29
Strength to Weight: Bending, points 22 to 41
26 to 35
Thermal Diffusivity, mm2/s 7.3
69
Thermal Shock Resistance, points 25 to 62
7.8 to 13

Alloy Composition

Aluminum (Al), % 0
95.2 to 97.6
Carbon (C), % 0.15 to 0.4
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 82.3 to 87.9
0 to 0.6
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.45 to 0.65
Manganese (Mn), % 0 to 1.0
0.3 to 0.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.75
0 to 0.050
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
1.6 to 2.4
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.050 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15