MakeItFrom.com
Menu (ESC)

AISI 420 Stainless Steel vs. Grade Ti-Pd16 Titanium

AISI 420 stainless steel belongs to the iron alloys classification, while grade Ti-Pd16 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 420 stainless steel and the bottom bar is grade Ti-Pd16 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
180
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 8.0 to 15
17
Fatigue Strength, MPa 220 to 670
200
Poisson's Ratio 0.28
0.32
Rockwell B Hardness 84
83
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 690 to 1720
390
Tensile Strength: Yield (Proof), MPa 380 to 1310
310

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 620
320
Melting Completion (Liquidus), °C 1510
1660
Melting Onset (Solidus), °C 1450
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 27
22
Thermal Expansion, µm/m-K 10
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
7.1

Otherwise Unclassified Properties

Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.0
36
Embodied Energy, MJ/kg 28
600
Embodied Water, L/kg 100
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 130
62
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 4410
440
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 25 to 62
24
Strength to Weight: Bending, points 22 to 41
26
Thermal Diffusivity, mm2/s 7.3
8.9
Thermal Shock Resistance, points 25 to 62
30

Alloy Composition

Carbon (C), % 0.15 to 0.4
0 to 0.1
Chromium (Cr), % 12 to 14
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 82.3 to 87.9
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.75
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.8 to 99.96
Residuals, % 0
0 to 0.4