MakeItFrom.com
Menu (ESC)

AISI 420 Stainless Steel vs. C33200 Brass

AISI 420 stainless steel belongs to the iron alloys classification, while C33200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 420 stainless steel and the bottom bar is C33200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 8.0 to 15
7.0 to 60
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
40
Shear Strength, MPa 420 to 1010
240 to 300
Tensile Strength: Ultimate (UTS), MPa 690 to 1720
320 to 520
Tensile Strength: Yield (Proof), MPa 380 to 1310
110 to 450

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 620
130
Melting Completion (Liquidus), °C 1510
930
Melting Onset (Solidus), °C 1450
900
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 27
120
Thermal Expansion, µm/m-K 10
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
26
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
28

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
24
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.0
2.6
Embodied Energy, MJ/kg 28
44
Embodied Water, L/kg 100
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 130
35 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 4410
60 to 960
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 25 to 62
11 to 17
Strength to Weight: Bending, points 22 to 41
13 to 17
Thermal Diffusivity, mm2/s 7.3
37
Thermal Shock Resistance, points 25 to 62
11 to 17

Alloy Composition

Carbon (C), % 0.15 to 0.4
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
65 to 68
Iron (Fe), % 82.3 to 87.9
0 to 0.070
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
29 to 33.5
Residuals, % 0
0 to 0.4