MakeItFrom.com
Menu (ESC)

AISI 420 Stainless Steel vs. C41300 Brass

AISI 420 stainless steel belongs to the iron alloys classification, while C41300 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 420 stainless steel and the bottom bar is C41300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 8.0 to 15
2.0 to 44
Poisson's Ratio 0.28
0.33
Rockwell B Hardness 84
53 to 88
Shear Modulus, GPa 76
42
Shear Strength, MPa 420 to 1010
230 to 370
Tensile Strength: Ultimate (UTS), MPa 690 to 1720
300 to 630
Tensile Strength: Yield (Proof), MPa 380 to 1310
120 to 570

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 620
180
Melting Completion (Liquidus), °C 1510
1040
Melting Onset (Solidus), °C 1450
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 27
130
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
30
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
31

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
29
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.0
2.7
Embodied Energy, MJ/kg 28
44
Embodied Water, L/kg 100
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 130
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 4410
69 to 1440
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25 to 62
9.6 to 20
Strength to Weight: Bending, points 22 to 41
11 to 19
Thermal Diffusivity, mm2/s 7.3
40
Thermal Shock Resistance, points 25 to 62
11 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.15 to 0.4
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
89 to 93
Iron (Fe), % 82.3 to 87.9
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.7 to 1.3
Zinc (Zn), % 0
5.1 to 10.3
Residuals, % 0
0 to 0.5