MakeItFrom.com
Menu (ESC)

AISI 420 Stainless Steel vs. C66700 Brass

AISI 420 stainless steel belongs to the iron alloys classification, while C66700 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 420 stainless steel and the bottom bar is C66700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 8.0 to 15
2.0 to 58
Poisson's Ratio 0.28
0.31
Rockwell B Hardness 84
57 to 93
Shear Modulus, GPa 76
41
Shear Strength, MPa 420 to 1010
250 to 530
Tensile Strength: Ultimate (UTS), MPa 690 to 1720
340 to 690
Tensile Strength: Yield (Proof), MPa 380 to 1310
100 to 640

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 620
140
Melting Completion (Liquidus), °C 1510
1090
Melting Onset (Solidus), °C 1450
1050
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 27
97
Thermal Expansion, µm/m-K 10
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
17
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
19

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
25
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.0
2.7
Embodied Energy, MJ/kg 28
45
Embodied Water, L/kg 100
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 130
13 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 4410
49 to 1900
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 25 to 62
11 to 23
Strength to Weight: Bending, points 22 to 41
13 to 21
Thermal Diffusivity, mm2/s 7.3
30
Thermal Shock Resistance, points 25 to 62
11 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.15 to 0.4
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
68.5 to 71.5
Iron (Fe), % 82.3 to 87.9
0 to 0.1
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 0 to 1.0
0.8 to 1.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
26.3 to 30.7
Residuals, % 0
0 to 0.5