MakeItFrom.com
Menu (ESC)

AISI 420F Stainless Steel vs. C87800 Brass

AISI 420F stainless steel belongs to the iron alloys classification, while C87800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 420F stainless steel and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18
25
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 740
590
Tensile Strength: Yield (Proof), MPa 430
350

Thermal Properties

Latent Heat of Fusion, J/g 270
260
Maximum Temperature: Mechanical, °C 760
170
Melting Completion (Liquidus), °C 1440
920
Melting Onset (Solidus), °C 1390
820
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 25
28
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.7
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
27
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 2.0
2.7
Embodied Energy, MJ/kg 28
44
Embodied Water, L/kg 100
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
130
Resilience: Unit (Modulus of Resilience), kJ/m3 480
540
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 27
20
Strength to Weight: Bending, points 23
19
Thermal Diffusivity, mm2/s 6.8
8.3
Thermal Shock Resistance, points 27
21

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0.3 to 0.4
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
80 to 84.2
Iron (Fe), % 82.4 to 87.6
0 to 0.15
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.3
0 to 0.15
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.060
0 to 0.010
Silicon (Si), % 0 to 1.0
3.8 to 4.2
Sulfur (S), % 0.15 to 0.35
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.5