MakeItFrom.com
Menu (ESC)

AISI 431 Stainless Steel vs. C66300 Brass

AISI 431 stainless steel belongs to the iron alloys classification, while C66300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 431 stainless steel and the bottom bar is C66300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 15 to 17
2.3 to 22
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Shear Strength, MPa 550 to 840
290 to 470
Tensile Strength: Ultimate (UTS), MPa 890 to 1380
460 to 810
Tensile Strength: Yield (Proof), MPa 710 to 1040
400 to 800

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 850
180
Melting Completion (Liquidus), °C 1510
1050
Melting Onset (Solidus), °C 1450
1000
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 26
110
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
25
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
26

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
29
Density, g/cm3 7.7
8.6
Embodied Carbon, kg CO2/kg material 2.2
2.8
Embodied Energy, MJ/kg 31
46
Embodied Water, L/kg 120
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 180
17 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 2770
710 to 2850
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 32 to 50
15 to 26
Strength to Weight: Bending, points 27 to 36
15 to 22
Thermal Diffusivity, mm2/s 7.0
32
Thermal Shock Resistance, points 28 to 43
16 to 28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 15 to 17
0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0
84.5 to 87.5
Iron (Fe), % 78.2 to 83.8
1.4 to 2.4
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 1.3 to 2.5
0
Phosphorus (P), % 0 to 0.040
0 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.5 to 3.0
Zinc (Zn), % 0
6.0 to 12.8
Residuals, % 0
0 to 0.5