MakeItFrom.com
Menu (ESC)

AISI 436 Stainless Steel vs. S32053 Stainless Steel

Both AISI 436 stainless steel and S32053 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 64% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 436 stainless steel and the bottom bar is S32053 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
190
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 25
46
Fatigue Strength, MPa 190
310
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 77
83
Shear Modulus, GPa 77
80
Shear Strength, MPa 320
510
Tensile Strength: Ultimate (UTS), MPa 500
730
Tensile Strength: Yield (Proof), MPa 270
330

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Maximum Temperature: Corrosion, °C 460
440
Maximum Temperature: Mechanical, °C 880
1100
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
13
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 12
33
Density, g/cm3 7.7
8.1
Embodied Carbon, kg CO2/kg material 2.7
6.1
Embodied Energy, MJ/kg 38
83
Embodied Water, L/kg 120
210

Common Calculations

PREN (Pitting Resistance) 20
44
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
270
Resilience: Unit (Modulus of Resilience), kJ/m3 190
270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
25
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 6.7
3.3
Thermal Shock Resistance, points 18
16

Alloy Composition

Carbon (C), % 0 to 0.12
0 to 0.030
Chromium (Cr), % 16 to 18
22 to 24
Iron (Fe), % 77.8 to 83.3
41.7 to 48.8
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.75 to 1.3
5.0 to 6.0
Nickel (Ni), % 0
24 to 26
Niobium (Nb), % 0 to 0.8
0
Nitrogen (N), % 0
0.17 to 0.22
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.010