MakeItFrom.com
Menu (ESC)

AISI 440A Stainless Steel vs. AWS ER80S-B3L

Both AISI 440A stainless steel and AWS ER80S-B3L are iron alloys. They have 85% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 440A stainless steel and the bottom bar is AWS ER80S-B3L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 5.0 to 20
19
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
74
Tensile Strength: Ultimate (UTS), MPa 730 to 1790
630
Tensile Strength: Yield (Proof), MPa 420 to 1650
530

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Melting Completion (Liquidus), °C 1480
1460
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 23
41
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
4.1
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.2
1.8
Embodied Energy, MJ/kg 31
23
Embodied Water, L/kg 120
60

Common Calculations

PREN (Pitting Resistance) 18
6.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 120
120
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 26 to 65
22
Strength to Weight: Bending, points 23 to 43
21
Thermal Diffusivity, mm2/s 6.2
11
Thermal Shock Resistance, points 26 to 65
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.6 to 0.75
0 to 0.050
Chromium (Cr), % 16 to 18
2.3 to 2.7
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 78.4 to 83.4
93.6 to 96
Manganese (Mn), % 0 to 1.0
0.4 to 0.7
Molybdenum (Mo), % 0 to 0.75
0.9 to 1.2
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0.4 to 0.7
Sulfur (S), % 0 to 0.015
0 to 0.025
Residuals, % 0
0 to 0.5