MakeItFrom.com
Menu (ESC)

AISI 440A Stainless Steel vs. EN AC-21200 Aluminum

AISI 440A stainless steel belongs to the iron alloys classification, while EN AC-21200 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 440A stainless steel and the bottom bar is EN AC-21200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 5.0 to 20
3.9 to 6.2
Fatigue Strength, MPa 270 to 790
110 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 730 to 1790
410 to 440
Tensile Strength: Yield (Proof), MPa 420 to 1650
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 760
170
Melting Completion (Liquidus), °C 1480
660
Melting Onset (Solidus), °C 1370
550
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 23
130
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
10
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 2.2
8.0
Embodied Energy, MJ/kg 31
150
Embodied Water, L/kg 120
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 120
16 to 22
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 26 to 65
38 to 40
Strength to Weight: Bending, points 23 to 43
41 to 43
Thermal Diffusivity, mm2/s 6.2
49
Thermal Shock Resistance, points 26 to 65
18 to 19

Alloy Composition

Aluminum (Al), % 0
93.3 to 95.7
Carbon (C), % 0.6 to 0.75
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 78.4 to 83.4
0 to 0.2
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0
0.15 to 0.5
Manganese (Mn), % 0 to 1.0
0.2 to 0.5
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0
0 to 0.050
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.1