MakeItFrom.com
Menu (ESC)

AISI 440A Stainless Steel vs. C70600 Copper-nickel

AISI 440A stainless steel belongs to the iron alloys classification, while C70600 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 440A stainless steel and the bottom bar is C70600 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 5.0 to 20
3.0 to 34
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
46
Shear Strength, MPa 450 to 1040
190 to 330
Tensile Strength: Ultimate (UTS), MPa 730 to 1790
290 to 570
Tensile Strength: Yield (Proof), MPa 420 to 1650
63 to 270

Thermal Properties

Latent Heat of Fusion, J/g 280
220
Maximum Temperature: Mechanical, °C 760
220
Melting Completion (Liquidus), °C 1480
1150
Melting Onset (Solidus), °C 1370
1100
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 23
44
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
9.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
33
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.2
3.4
Embodied Energy, MJ/kg 31
51
Embodied Water, L/kg 120
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 120
6.5 to 160
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 26 to 65
9.1 to 18
Strength to Weight: Bending, points 23 to 43
11 to 17
Thermal Diffusivity, mm2/s 6.2
13
Thermal Shock Resistance, points 26 to 65
9.8 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.6 to 0.75
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
84.7 to 90
Iron (Fe), % 78.4 to 83.4
1.0 to 1.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0
9.0 to 11
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5