MakeItFrom.com
Menu (ESC)

AISI 440C Stainless Steel vs. 1235 Aluminum

AISI 440C stainless steel belongs to the iron alloys classification, while 1235 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 440C stainless steel and the bottom bar is 1235 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 2.0 to 14
28 to 34
Fatigue Strength, MPa 260 to 840
23 to 58
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 430 to 1120
52 to 56
Tensile Strength: Ultimate (UTS), MPa 710 to 1970
80 to 84
Tensile Strength: Yield (Proof), MPa 450 to 1900
23 to 57

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 870
170
Melting Completion (Liquidus), °C 1480
640
Melting Onset (Solidus), °C 1370
640
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 22
230
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
60
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
200

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.2
8.3
Embodied Energy, MJ/kg 31
160
Embodied Water, L/kg 120
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39 to 88
17 to 25
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 26 to 71
8.2 to 8.6
Strength to Weight: Bending, points 23 to 46
15 to 16
Thermal Diffusivity, mm2/s 6.0
93
Thermal Shock Resistance, points 26 to 71
3.6 to 3.7

Alloy Composition

Aluminum (Al), % 0
99.35 to 100
Carbon (C), % 1.0 to 1.2
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 78 to 83.1
0 to 0.65
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.050
Molybdenum (Mo), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.65
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.1