MakeItFrom.com
Menu (ESC)

AISI 440C Stainless Steel vs. Titanium 6-5-0.5

AISI 440C stainless steel belongs to the iron alloys classification, while titanium 6-5-0.5 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 440C stainless steel and the bottom bar is titanium 6-5-0.5.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 2.0 to 14
6.7
Fatigue Strength, MPa 260 to 840
530
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Shear Strength, MPa 430 to 1120
630
Tensile Strength: Ultimate (UTS), MPa 710 to 1970
1080
Tensile Strength: Yield (Proof), MPa 450 to 1900
990

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 870
300
Melting Completion (Liquidus), °C 1480
1610
Melting Onset (Solidus), °C 1370
1560
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 22
4.2
Thermal Expansion, µm/m-K 10
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
41
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.2
33
Embodied Energy, MJ/kg 31
540
Embodied Water, L/kg 120
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39 to 88
71
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 26 to 71
67
Strength to Weight: Bending, points 23 to 46
52
Thermal Diffusivity, mm2/s 6.0
1.7
Thermal Shock Resistance, points 26 to 71
79

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
5.7 to 6.3
Carbon (C), % 1.0 to 1.2
0 to 0.080
Chromium (Cr), % 16 to 18
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 78 to 83.1
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.75
0.25 to 0.75
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.19
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
85.6 to 90.1
Zirconium (Zr), % 0
4.0 to 6.0
Residuals, % 0
0 to 0.4