MakeItFrom.com
Menu (ESC)

AISI 440C Stainless Steel vs. S31266 Stainless Steel

Both AISI 440C stainless steel and S31266 stainless steel are iron alloys. They have 58% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 440C stainless steel and the bottom bar is S31266 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 2.0 to 14
40
Fatigue Strength, MPa 260 to 840
400
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
81
Shear Strength, MPa 430 to 1120
590
Tensile Strength: Ultimate (UTS), MPa 710 to 1970
860
Tensile Strength: Yield (Proof), MPa 450 to 1900
470

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Maximum Temperature: Corrosion, °C 390
440
Maximum Temperature: Mechanical, °C 870
1100
Melting Completion (Liquidus), °C 1480
1470
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 22
12
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
37
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.2
6.5
Embodied Energy, MJ/kg 31
89
Embodied Water, L/kg 120
220

Common Calculations

PREN (Pitting Resistance) 18
54
Resilience: Ultimate (Unit Rupture Work), MJ/m3 39 to 88
290
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 26 to 71
29
Strength to Weight: Bending, points 23 to 46
24
Thermal Diffusivity, mm2/s 6.0
3.1
Thermal Shock Resistance, points 26 to 71
18

Alloy Composition

Carbon (C), % 1.0 to 1.2
0 to 0.030
Chromium (Cr), % 16 to 18
23 to 25
Copper (Cu), % 0
1.0 to 2.5
Iron (Fe), % 78 to 83.1
34.1 to 46
Manganese (Mn), % 0 to 1.0
2.0 to 4.0
Molybdenum (Mo), % 0 to 0.75
5.2 to 6.2
Nickel (Ni), % 0
21 to 24
Nitrogen (N), % 0
0.35 to 0.6
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.020
Tungsten (W), % 0
1.5 to 2.5