MakeItFrom.com
Menu (ESC)

AISI 442 Stainless Steel vs. N12160 Nickel

AISI 442 stainless steel belongs to the iron alloys classification, while N12160 nickel belongs to the nickel alloys. They have a modest 24% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 442 stainless steel and the bottom bar is N12160 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 23
45
Fatigue Strength, MPa 210
230
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 78
80
Shear Strength, MPa 370
500
Tensile Strength: Ultimate (UTS), MPa 580
710
Tensile Strength: Yield (Proof), MPa 310
270

Thermal Properties

Latent Heat of Fusion, J/g 290
360
Maximum Temperature: Mechanical, °C 960
1060
Melting Completion (Liquidus), °C 1430
1330
Melting Onset (Solidus), °C 1390
1280
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 22
11
Thermal Expansion, µm/m-K 11
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
90
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.3
8.5
Embodied Energy, MJ/kg 32
120
Embodied Water, L/kg 130
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
260
Resilience: Unit (Modulus of Resilience), kJ/m3 250
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
24
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 5.8
2.8
Thermal Shock Resistance, points 20
19

Alloy Composition

Carbon (C), % 0 to 0.2
0 to 0.15
Chromium (Cr), % 18 to 23
26 to 30
Cobalt (Co), % 0
27 to 33
Iron (Fe), % 74.1 to 82
0 to 3.5
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.6
25 to 44.4
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
2.4 to 3.0
Sulfur (S), % 0 to 0.040
0 to 0.015
Titanium (Ti), % 0
0.2 to 0.8
Tungsten (W), % 0
0 to 1.0