MakeItFrom.com
Menu (ESC)

AISI 444 Stainless Steel vs. EN 1.4958 Stainless Steel

Both AISI 444 stainless steel and EN 1.4958 stainless steel are iron alloys. They have 66% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 444 stainless steel and the bottom bar is EN 1.4958 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
40
Fatigue Strength, MPa 210
170
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
77
Shear Strength, MPa 300
430
Tensile Strength: Ultimate (UTS), MPa 470
630
Tensile Strength: Yield (Proof), MPa 310
190

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 580
500
Maximum Temperature: Mechanical, °C 930
1090
Melting Completion (Liquidus), °C 1460
1400
Melting Onset (Solidus), °C 1420
1350
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 23
12
Thermal Expansion, µm/m-K 10
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 15
30
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 3.4
5.3
Embodied Energy, MJ/kg 47
75
Embodied Water, L/kg 130
200

Common Calculations

PREN (Pitting Resistance) 26
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
190
Resilience: Unit (Modulus of Resilience), kJ/m3 240
95
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
22
Strength to Weight: Bending, points 17
20
Thermal Diffusivity, mm2/s 6.2
3.2
Thermal Shock Resistance, points 16
15

Alloy Composition

Aluminum (Al), % 0
0.2 to 0.5
Carbon (C), % 0 to 0.025
0.030 to 0.080
Chromium (Cr), % 17.5 to 19.5
19 to 22
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 73.3 to 80.8
41.1 to 50.6
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 0 to 1.0
30 to 32.5
Niobium (Nb), % 0.2 to 0.8
0 to 0.1
Nitrogen (N), % 0 to 0.035
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.015
Silicon (Si), % 0 to 1.0
0 to 0.7
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0.2 to 0.8
0.2 to 0.5