MakeItFrom.com
Menu (ESC)

AM100A Magnesium vs. C90500 Gun Metal

AM100A magnesium belongs to the magnesium alloys classification, while C90500 gun metal belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AM100A magnesium and the bottom bar is C90500 gun metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
110
Elongation at Break, % 1.0 to 6.8
20
Fatigue Strength, MPa 48 to 70
90
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 18
40
Tensile Strength: Ultimate (UTS), MPa 160 to 270
320
Tensile Strength: Yield (Proof), MPa 78 to 140
160

Thermal Properties

Latent Heat of Fusion, J/g 350
190
Maximum Temperature: Mechanical, °C 140
170
Melting Completion (Liquidus), °C 590
1000
Melting Onset (Solidus), °C 460
850
Solidification (Pattern Maker's) Shrinkage, % 1.3
1.6
Specific Heat Capacity, J/kg-K 990
370
Thermal Conductivity, W/m-K 73
75
Thermal Expansion, µm/m-K 25
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
11
Electrical Conductivity: Equal Weight (Specific), % IACS 59
11

Otherwise Unclassified Properties

Base Metal Price, % relative 12
35
Density, g/cm3 1.7
8.7
Embodied Carbon, kg CO2/kg material 22
3.6
Embodied Energy, MJ/kg 160
59
Embodied Water, L/kg 1000
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.3 to 15
54
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 210
110
Stiffness to Weight: Axial, points 15
6.9
Stiffness to Weight: Bending, points 70
18
Strength to Weight: Axial, points 25 to 44
10
Strength to Weight: Bending, points 38 to 54
12
Thermal Diffusivity, mm2/s 43
23
Thermal Shock Resistance, points 9.7 to 17
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 9.3 to 10.7
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 0 to 0.1
86 to 89
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 87.9 to 90.6
0
Manganese (Mn), % 0.1 to 0.35
0
Nickel (Ni), % 0 to 0.010
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.3
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0 to 0.3
1.0 to 3.0
Residuals, % 0 to 0.3
0 to 0.3