MakeItFrom.com
Menu (ESC)

AM100A Magnesium vs. N08332 Stainless Steel

AM100A magnesium belongs to the magnesium alloys classification, while N08332 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AM100A magnesium and the bottom bar is N08332 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 1.0 to 6.8
34
Fatigue Strength, MPa 48 to 70
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
76
Shear Strength, MPa 90 to 150
350
Tensile Strength: Ultimate (UTS), MPa 160 to 270
520
Tensile Strength: Yield (Proof), MPa 78 to 140
210

Thermal Properties

Latent Heat of Fusion, J/g 350
310
Maximum Temperature: Mechanical, °C 140
1050
Melting Completion (Liquidus), °C 590
1390
Melting Onset (Solidus), °C 460
1340
Specific Heat Capacity, J/kg-K 990
480
Thermal Conductivity, W/m-K 73
12
Thermal Expansion, µm/m-K 25
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 59
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
32
Density, g/cm3 1.7
8.0
Embodied Carbon, kg CO2/kg material 22
5.4
Embodied Energy, MJ/kg 160
77
Embodied Water, L/kg 1000
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.3 to 15
140
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 210
110
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 70
24
Strength to Weight: Axial, points 25 to 44
18
Strength to Weight: Bending, points 38 to 54
18
Thermal Diffusivity, mm2/s 43
3.1
Thermal Shock Resistance, points 9.7 to 17
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 9.3 to 10.7
0
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 0 to 0.1
0 to 1.0
Iron (Fe), % 0
38.3 to 48.2
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 87.9 to 90.6
0
Manganese (Mn), % 0.1 to 0.35
0 to 2.0
Nickel (Ni), % 0 to 0.010
34 to 37
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.3
0.75 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0
0 to 0.025
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.3
0