MakeItFrom.com
Menu (ESC)

AM50A Magnesium vs. 1080 Aluminum

AM50A magnesium belongs to the magnesium alloys classification, while 1080 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AM50A magnesium and the bottom bar is 1080 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
68
Elongation at Break, % 11
4.6 to 40
Fatigue Strength, MPa 70
21 to 48
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
26
Shear Strength, MPa 120
49 to 78
Tensile Strength: Ultimate (UTS), MPa 210
72 to 130
Tensile Strength: Yield (Proof), MPa 120
17 to 120

Thermal Properties

Latent Heat of Fusion, J/g 350
400
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 620
640
Melting Onset (Solidus), °C 570
640
Specific Heat Capacity, J/kg-K 1000
900
Thermal Conductivity, W/m-K 65
230
Thermal Expansion, µm/m-K 26
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
61
Electrical Conductivity: Equal Weight (Specific), % IACS 88
200

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 1.7
2.7
Embodied Carbon, kg CO2/kg material 23
8.3
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 990
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
4.7 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 150
2.1 to 100
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 71
50
Strength to Weight: Axial, points 35
7.4 to 14
Strength to Weight: Bending, points 47
14 to 22
Thermal Diffusivity, mm2/s 39
94
Thermal Shock Resistance, points 13
3.2 to 6.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 4.4 to 5.4
99.8 to 100
Copper (Cu), % 0 to 0.010
0 to 0.030
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.0040
0 to 0.15
Magnesium (Mg), % 93.7 to 95.3
0 to 0.020
Manganese (Mn), % 0.26 to 0.6
0 to 0.020
Nickel (Ni), % 0 to 0.0020
0
Silicon (Si), % 0 to 0.1
0 to 0.15
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.22
0 to 0.030
Residuals, % 0
0 to 0.020