MakeItFrom.com
Menu (ESC)

AM60A Magnesium vs. ASTM A369 Grade FP22

AM60A magnesium belongs to the magnesium alloys classification, while ASTM A369 grade FP22 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AM60A magnesium and the bottom bar is ASTM A369 grade FP22.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 62
140
Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 8.8
20
Fatigue Strength, MPa 70
160
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
74
Shear Strength, MPa 130
300
Tensile Strength: Ultimate (UTS), MPa 230
470
Tensile Strength: Yield (Proof), MPa 130
240

Thermal Properties

Latent Heat of Fusion, J/g 350
260
Maximum Temperature: Mechanical, °C 120
460
Melting Completion (Liquidus), °C 620
1470
Melting Onset (Solidus), °C 550
1430
Specific Heat Capacity, J/kg-K 1000
470
Thermal Conductivity, W/m-K 62
39
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 69
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 12
3.8
Density, g/cm3 1.7
7.9
Embodied Carbon, kg CO2/kg material 23
1.7
Embodied Energy, MJ/kg 160
23
Embodied Water, L/kg 990
58

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
80
Resilience: Unit (Modulus of Resilience), kJ/m3 190
150
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 71
24
Strength to Weight: Axial, points 37
17
Strength to Weight: Bending, points 49
17
Thermal Diffusivity, mm2/s 37
11
Thermal Shock Resistance, points 14
14

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
1.9 to 2.6
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 0
95 to 96.9
Magnesium (Mg), % 91.8 to 94.4
0
Manganese (Mn), % 0.13 to 0.6
0.3 to 0.6
Molybdenum (Mo), % 0
0.87 to 1.1
Nickel (Ni), % 0 to 0.030
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 0 to 0.22
0