MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F10 vs. 2036 Aluminum

ASTM A182 grade F10 belongs to the iron alloys classification, while 2036 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F10 and the bottom bar is 2036 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 34
24
Fatigue Strength, MPa 180
130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 420
210
Tensile Strength: Ultimate (UTS), MPa 630
340
Tensile Strength: Yield (Proof), MPa 230
200

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 600
190
Melting Completion (Liquidus), °C 1420
650
Melting Onset (Solidus), °C 1370
560
Specific Heat Capacity, J/kg-K 470
890
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
41
Electrical Conductivity: Equal Weight (Specific), % IACS 17
130

Otherwise Unclassified Properties

Base Metal Price, % relative 18
10
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 3.6
8.1
Embodied Energy, MJ/kg 51
150
Embodied Water, L/kg 120
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
70
Resilience: Unit (Modulus of Resilience), kJ/m3 140
270
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
48
Strength to Weight: Axial, points 22
33
Strength to Weight: Bending, points 21
38
Thermal Shock Resistance, points 18
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
94.4 to 97.4
Carbon (C), % 0.1 to 0.2
0
Chromium (Cr), % 7.0 to 9.0
0 to 0.1
Copper (Cu), % 0
2.2 to 3.0
Iron (Fe), % 66.5 to 72.4
0 to 0.5
Magnesium (Mg), % 0
0.3 to 0.6
Manganese (Mn), % 0.5 to 0.8
0.1 to 0.4
Nickel (Ni), % 19 to 22
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 1.4
0 to 0.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15