MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F10 vs. 6016 Aluminum

ASTM A182 grade F10 belongs to the iron alloys classification, while 6016 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F10 and the bottom bar is 6016 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
55 to 80
Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 34
11 to 27
Fatigue Strength, MPa 180
68 to 89
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 420
130 to 170
Tensile Strength: Ultimate (UTS), MPa 630
200 to 280
Tensile Strength: Yield (Proof), MPa 230
110 to 210

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 600
160
Melting Completion (Liquidus), °C 1420
660
Melting Onset (Solidus), °C 1370
610
Specific Heat Capacity, J/kg-K 470
900
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
48 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 17
160 to 180

Otherwise Unclassified Properties

Base Metal Price, % relative 18
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 3.6
8.2
Embodied Energy, MJ/kg 51
150
Embodied Water, L/kg 120
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
29 to 47
Resilience: Unit (Modulus of Resilience), kJ/m3 140
82 to 340
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 22
21 to 29
Strength to Weight: Bending, points 21
29 to 35
Thermal Shock Resistance, points 18
9.1 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
96.4 to 98.8
Carbon (C), % 0.1 to 0.2
0
Chromium (Cr), % 7.0 to 9.0
0 to 0.1
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 66.5 to 72.4
0 to 0.5
Magnesium (Mg), % 0
0.25 to 0.6
Manganese (Mn), % 0.5 to 0.8
0 to 0.2
Nickel (Ni), % 19 to 22
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 1.4
1.0 to 1.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15