MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F2 vs. EN 1.4509 Stainless Steel

Both ASTM A182 grade F2 and EN 1.4509 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 81% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F2 and the bottom bar is EN 1.4509 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
21
Fatigue Strength, MPa 220
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 350
330
Tensile Strength: Ultimate (UTS), MPa 550
530
Tensile Strength: Yield (Proof), MPa 310
260

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 420
890
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 46
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.7
13
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.6
2.8
Embodied Energy, MJ/kg 21
41
Embodied Water, L/kg 50
120

Common Calculations

PREN (Pitting Resistance) 2.5
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
90
Resilience: Unit (Modulus of Resilience), kJ/m3 250
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
19
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 12
6.8
Thermal Shock Resistance, points 16
19

Alloy Composition

Carbon (C), % 0.050 to 0.21
0 to 0.030
Chromium (Cr), % 0.5 to 0.81
17.5 to 18.5
Iron (Fe), % 96.9 to 98.6
77.8 to 82.1
Manganese (Mn), % 0.3 to 0.8
0 to 1.0
Molybdenum (Mo), % 0.44 to 0.65
0
Niobium (Nb), % 0
0.3 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0.1 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.015
Titanium (Ti), % 0
0.1 to 0.6