MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F24 vs. 7076 Aluminum

ASTM A182 grade F24 belongs to the iron alloys classification, while 7076 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F24 and the bottom bar is 7076 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
160
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 23
6.2
Fatigue Strength, MPa 330
170
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 74
27
Shear Strength, MPa 420
310
Tensile Strength: Ultimate (UTS), MPa 670
530
Tensile Strength: Yield (Proof), MPa 460
460

Thermal Properties

Latent Heat of Fusion, J/g 260
380
Maximum Temperature: Mechanical, °C 460
170
Melting Completion (Liquidus), °C 1470
630
Melting Onset (Solidus), °C 1430
460
Specific Heat Capacity, J/kg-K 470
860
Thermal Conductivity, W/m-K 39
140
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
35
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
100

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
9.5
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 2.3
8.0
Embodied Energy, MJ/kg 33
150
Embodied Water, L/kg 61
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
31
Resilience: Unit (Modulus of Resilience), kJ/m3 570
1510
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 24
49
Strength to Weight: Bending, points 22
48
Thermal Diffusivity, mm2/s 11
54
Thermal Shock Resistance, points 19
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.020
86.9 to 91.2
Boron (B), % 0.0015 to 0.0070
0
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 2.2 to 2.6
0
Copper (Cu), % 0
0.3 to 1.0
Iron (Fe), % 94.5 to 96.1
0 to 0.6
Magnesium (Mg), % 0
1.2 to 2.0
Manganese (Mn), % 0.3 to 0.7
0.3 to 0.8
Molybdenum (Mo), % 0.9 to 1.1
0
Nitrogen (N), % 0 to 0.12
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0.15 to 0.45
0 to 0.4
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.060 to 0.1
0 to 0.2
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
7.0 to 8.0
Residuals, % 0
0 to 0.15