MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F24 vs. EN 1.1122 Steel

Both ASTM A182 grade F24 and EN 1.1122 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F24 and the bottom bar is EN 1.1122 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
100 to 130
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
12 to 21
Fatigue Strength, MPa 330
170 to 260
Poisson's Ratio 0.29
0.29
Reduction in Area, % 45
63 to 73
Shear Modulus, GPa 74
73
Shear Strength, MPa 420
240 to 290
Tensile Strength: Ultimate (UTS), MPa 670
340 to 460
Tensile Strength: Yield (Proof), MPa 460
240 to 370

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 460
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
51
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
1.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.3
1.4
Embodied Energy, MJ/kg 33
18
Embodied Water, L/kg 61
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
36 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 570
160 to 360
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
12 to 16
Strength to Weight: Bending, points 22
14 to 17
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 19
11 to 15

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0015 to 0.0070
0
Carbon (C), % 0.050 to 0.1
0.080 to 0.12
Chromium (Cr), % 2.2 to 2.6
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 94.5 to 96.1
98.7 to 99.62
Manganese (Mn), % 0.3 to 0.7
0.3 to 0.6
Molybdenum (Mo), % 0.9 to 1.1
0
Nitrogen (N), % 0 to 0.12
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0.15 to 0.45
0 to 0.3
Sulfur (S), % 0 to 0.010
0 to 0.025
Titanium (Ti), % 0.060 to 0.1
0
Vanadium (V), % 0.2 to 0.3
0