MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F3V vs. C90200 Bronze

ASTM A182 grade F3V belongs to the iron alloys classification, while C90200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F3V and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
70
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
30
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
41
Tensile Strength: Ultimate (UTS), MPa 660
260
Tensile Strength: Yield (Proof), MPa 470
110

Thermal Properties

Latent Heat of Fusion, J/g 250
200
Maximum Temperature: Mechanical, °C 470
180
Melting Completion (Liquidus), °C 1470
1050
Melting Onset (Solidus), °C 1430
880
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 39
62
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
13
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
13

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
34
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 2.3
3.3
Embodied Energy, MJ/kg 33
53
Embodied Water, L/kg 63
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
63
Resilience: Unit (Modulus of Resilience), kJ/m3 590
55
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 23
8.3
Strength to Weight: Bending, points 21
10
Thermal Diffusivity, mm2/s 10
19
Thermal Shock Resistance, points 19
9.5

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0.0010 to 0.0030
0
Carbon (C), % 0.050 to 0.18
0
Chromium (Cr), % 2.8 to 3.2
0
Copper (Cu), % 0
91 to 94
Iron (Fe), % 94.4 to 95.7
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.020
0 to 0.050
Silicon (Si), % 0 to 0.1
0 to 0.0050
Sulfur (S), % 0 to 0.020
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Titanium (Ti), % 0.015 to 0.035
0
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6