MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F3V vs. N06035 Nickel

ASTM A182 grade F3V belongs to the iron alloys classification, while N06035 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F3V and the bottom bar is N06035 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 20
34
Fatigue Strength, MPa 330
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
84
Shear Strength, MPa 410
440
Tensile Strength: Ultimate (UTS), MPa 660
660
Tensile Strength: Yield (Proof), MPa 470
270

Thermal Properties

Latent Heat of Fusion, J/g 250
340
Maximum Temperature: Mechanical, °C 470
1030
Melting Completion (Liquidus), °C 1470
1440
Melting Onset (Solidus), °C 1430
1390
Specific Heat Capacity, J/kg-K 470
450
Thermal Expansion, µm/m-K 13
13

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
60
Density, g/cm3 7.9
8.4
Embodied Carbon, kg CO2/kg material 2.3
10
Embodied Energy, MJ/kg 33
140
Embodied Water, L/kg 63
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
180
Resilience: Unit (Modulus of Resilience), kJ/m3 590
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23
22
Strength to Weight: Bending, points 21
20
Thermal Shock Resistance, points 19
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Boron (B), % 0.0010 to 0.0030
0
Carbon (C), % 0.050 to 0.18
0 to 0.050
Chromium (Cr), % 2.8 to 3.2
32.3 to 34.3
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 94.4 to 95.7
0 to 2.0
Manganese (Mn), % 0.3 to 0.6
0 to 0.5
Molybdenum (Mo), % 0.9 to 1.1
7.6 to 9.0
Nickel (Ni), % 0
51.1 to 60.2
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 0.6
Sulfur (S), % 0 to 0.020
0 to 0.015
Titanium (Ti), % 0.015 to 0.035
0
Tungsten (W), % 0
0 to 0.6
Vanadium (V), % 0.2 to 0.3
0 to 0.2