MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F3V vs. S82012 Stainless Steel

Both ASTM A182 grade F3V and S82012 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 78% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F3V and the bottom bar is S82012 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
40
Fatigue Strength, MPa 330
480
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
78
Shear Strength, MPa 410
550
Tensile Strength: Ultimate (UTS), MPa 660
800
Tensile Strength: Yield (Proof), MPa 470
560

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 470
950
Melting Completion (Liquidus), °C 1470
1430
Melting Onset (Solidus), °C 1430
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
11
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.3
2.4
Embodied Energy, MJ/kg 33
35
Embodied Water, L/kg 63
140

Common Calculations

PREN (Pitting Resistance) 6.3
24
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
290
Resilience: Unit (Modulus of Resilience), kJ/m3 590
790
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23
29
Strength to Weight: Bending, points 21
25
Thermal Diffusivity, mm2/s 10
3.9
Thermal Shock Resistance, points 19
23

Alloy Composition

Boron (B), % 0.0010 to 0.0030
0
Carbon (C), % 0.050 to 0.18
0 to 0.050
Chromium (Cr), % 2.8 to 3.2
19 to 20.5
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 94.4 to 95.7
71.3 to 77.9
Manganese (Mn), % 0.3 to 0.6
2.0 to 4.0
Molybdenum (Mo), % 0.9 to 1.1
0.1 to 0.6
Nickel (Ni), % 0
0.8 to 1.5
Nitrogen (N), % 0
0.16 to 0.26
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 0.8
Sulfur (S), % 0 to 0.020
0 to 0.0050
Titanium (Ti), % 0.015 to 0.035
0
Vanadium (V), % 0.2 to 0.3
0