MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F5 vs. CC380H Copper-nickel

ASTM A182 grade F5 belongs to the iron alloys classification, while CC380H copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F5 and the bottom bar is CC380H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
80
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 22
26
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
47
Tensile Strength: Ultimate (UTS), MPa 540
310
Tensile Strength: Yield (Proof), MPa 310
120

Thermal Properties

Latent Heat of Fusion, J/g 260
220
Maximum Temperature: Mechanical, °C 510
220
Melting Completion (Liquidus), °C 1460
1130
Melting Onset (Solidus), °C 1420
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 40
46
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
11
Electrical Conductivity: Equal Weight (Specific), % IACS 9.4
11

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
36
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.8
3.8
Embodied Energy, MJ/kg 24
58
Embodied Water, L/kg 69
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
65
Resilience: Unit (Modulus of Resilience), kJ/m3 260
59
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19
9.8
Strength to Weight: Bending, points 19
12
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 15
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 4.0 to 6.0
0
Copper (Cu), % 0
84.5 to 89
Iron (Fe), % 91.5 to 95.3
1.0 to 1.8
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.3 to 0.6
1.0 to 1.5
Molybdenum (Mo), % 0.44 to 0.65
0
Nickel (Ni), % 0 to 0.5
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.5