MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F92 vs. EN 1.4482 Stainless Steel

Both ASTM A182 grade F92 and EN 1.4482 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F92 and the bottom bar is EN 1.4482 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
34
Fatigue Strength, MPa 360
420 to 450
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Shear Strength, MPa 440
510 to 530
Tensile Strength: Ultimate (UTS), MPa 690
770 to 800
Tensile Strength: Yield (Proof), MPa 500
530 to 570

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Maximum Temperature: Mechanical, °C 590
980
Melting Completion (Liquidus), °C 1490
1420
Melting Onset (Solidus), °C 1450
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
12
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 40
38
Embodied Water, L/kg 89
150

Common Calculations

PREN (Pitting Resistance) 14
24
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
230 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 650
690 to 820
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
28 to 29
Strength to Weight: Bending, points 22
24 to 25
Thermal Diffusivity, mm2/s 6.9
4.0
Thermal Shock Resistance, points 19
21 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0 to 0.030
Chromium (Cr), % 8.5 to 9.5
19.5 to 21.5
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 85.8 to 89.1
66.1 to 74.9
Manganese (Mn), % 0.3 to 0.6
4.0 to 6.0
Molybdenum (Mo), % 0.3 to 0.6
0.1 to 0.6
Nickel (Ni), % 0 to 0.4
1.5 to 3.5
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0.050 to 0.2
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0