MakeItFrom.com
Menu (ESC)

ASTM A209 Steel vs. C46500 Brass

ASTM A209 steel belongs to the iron alloys classification, while C46500 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A209 steel and the bottom bar is C46500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 34
18 to 50
Poisson's Ratio 0.29
0.31
Rockwell B Hardness 77 to 81
55 to 95
Shear Modulus, GPa 73
40
Shear Strength, MPa 280 to 310
280 to 380
Tensile Strength: Ultimate (UTS), MPa 420 to 460
380 to 610
Tensile Strength: Yield (Proof), MPa 220 to 250
190 to 490

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 410
120
Melting Completion (Liquidus), °C 1470
900
Melting Onset (Solidus), °C 1420 to 1430
890
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 50
120
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
26
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1 to 8.2
29

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
23
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 1.5
2.7
Embodied Energy, MJ/kg 20
47
Embodied Water, L/kg 47
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
99 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 170
170 to 1170
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 15 to 16
13 to 21
Strength to Weight: Bending, points 16 to 17
15 to 20
Thermal Diffusivity, mm2/s 13
38
Thermal Shock Resistance, points 12 to 14
13 to 20