MakeItFrom.com
Menu (ESC)

ASTM A227 Spring Steel vs. C90400 Bronze

ASTM A227 spring steel belongs to the iron alloys classification, while C90400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A227 spring steel and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 500 to 640
77
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 12
24
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
41
Tensile Strength: Ultimate (UTS), MPa 1720 to 2220
310
Tensile Strength: Yield (Proof), MPa 1430 to 1850
180

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1450
990
Melting Onset (Solidus), °C 1410
850
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 52
75
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
12
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
12

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
34
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 1.4
3.5
Embodied Energy, MJ/kg 19
56
Embodied Water, L/kg 46
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 260
65
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 61 to 79
10
Strength to Weight: Bending, points 41 to 48
12
Thermal Diffusivity, mm2/s 14
23
Thermal Shock Resistance, points 55 to 71
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0.45 to 0.85
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 97.4 to 99.1
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.3 to 1.3
0 to 0.010
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0.15 to 0.35
0 to 0.0050
Sulfur (S), % 0 to 0.050
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7